It was a sad day in October 2015 when researchers from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) announced they had detected plastic litter on the surface of Arctic waters.1 Greenland sharks and seabirds living in the area were already known to be eating the debris,2 but the appearance of 31 pieces of floating debris in an otherwise largely pristine environment painted a disturbing picture of pollution problems that will only get worse if the amounts of litter entering the oceans aren’t reduced.

With plastics now entering the farthest reaches of the globe, what does that mean for the environments where these pollutants are known to accumulate? Mismanaged waste is particularly problematic in China, Indonesia, Vietnam, Thailand and the Philippines, which together make up the top five countries for plastic pollution.3 In the U.S., one of the top waste-generating countries, littering is a major issue, especially in the form of single-use plastics, like soda bottles, drinking straws and potato chip bags.

According to environmental advocacy group Ocean Conservancy, some plastic products persist for so long, even in salty ocean water, that they’ll still be recognizable after 400 years.4 However, an equally alarming problem is the plastics that do get broken down into tiny pieces. Microplastic particles, which are less than 5 millimeters long, are literally clouding the oceans in spots.

Carried along with the ocean’s currents, swirling gyres of “plastic smog”5 now cover about 40 percent of the world’s ocean surfaces.6 They’re being eaten by fish and other marine life — that is well-known. But only recently did researchers take the logical next step to determine that it’s not only marine life ingesting plastic — you probably are too.

94 Percent of US Tap Water Contains Plastic Fibers

Research commissioned by media outlet Orb revealed alarming data about plastic pollution in tap water, with 83 percent of samples tested worldwide coming back as contaminated. In the U.S., 94 percent of tap water samples were found to contain plastic — the most out of all the locations tested. According to Orb:7

“Fibers in tap water … are both a discovery and a marker — a visceral sign of how far plastic has penetrated human life and human anatomy. We can’t see the long-chain molecules of pollutants like polyfluoroalkyl chemicals, even if they do reside in more than 98 percent of the population. But when fibers are filtered in a laboratory and enlarged by a microscope, the contamination becomes real.

The first studies into the health effects of microscopic plastics on humans are only just now beginning; there’s no telling if or when governments might establish a ‘safe’ threshold for plastic in water and food. Even farther away are studies of human exposure to nanoscale plastic particles, plastic measured in the millionths of a millimeter.”

Orb found, for example, 16 fibers in tap water taken at the visitor’s center in the U.S. Capitol in Washington, D.C., along with fibers in samples taken from Trump Tower in New York. Plastic fibers were also found in water taken from Indonesia, India, Ecuador, Uganda, England and Lebanon.

Where Are the Primary Sources of Microplastic?

Orb noted six primary sources of “invisible plastics,”8 one of which is synthetic microfibers from synthetic clothinglike fleece, acrylic and polyester. Microfibers from clothing are released during washing, to the tune of 1 million tons a year. It’s unknown what the environmental effects of microfiber pollution may be, but their irregular shape may make them harder for marine life to excrete than other microplastics (like microbeads).

According to the Mermaids (Mitigation of Microplastics Impact Caused by Textile Washing Processes) project, whose goal is to cut microfiber shedding during washing by 70 percent, the apparel industry has been slow to respond in taking steps to stop microfiber pollution.9

A Mermaids report suggested special coatings may help to stop the loss of microfibers during washing, as well as recommended laundry detergents be reformulated to minimize fiber shedding. However, as it stands Orb estimated that more than half of the microfibers released during the wash are missed by water treatment plants and end up in the environment.

Microbeads — those tiny plastic pellets you may have seen in your face wash or hand soap — are another primary source. Microbeads are so small they get flushed right down the bathroom drain and travel through wastewater treatment plants easily, because the filters used are too small to catch them. Research has only begun to reveal the extent of environmental pollution that microbeads have caused.

In a 2012 survey of the Great Lakes, it was found that the area has “some of the highest concentrations of microplastic found in the environment, and microbeads were prevalent.”10 One-third of the fish caught in the English Channel also contain microbeads, as do 83 percent of scampi sold in the U.K. 11 Bans on microbeads have taken place in the U.S. and Canada, but not yet in the EU. Orb estimated that more than 8 trillion microbeads ended up in U.S. waterways in 2015. Other sources noted in Orb’s report include:12

• Tire dust, which contains styrene butadiene rubber. According to Orbit, “Cars and trucks emit more than 20 grams of tire dust for every 100 kilometers they drive.”13

• Paints: Microplastics are distributed in paint dust, which comes from house paint, ship paint, road markings and more.

• Secondary microplastics: Single-use plastics like forks, bags, straws and takeout containers also litter the environment, with 8 million tons washing into waterways each year. Eventually, these items get broken down into microplastics.

• Airborne plastic fibers: This is a new area of research, but it’s thought that your limbs brushing against each other may be enough to release synthetic fibers into the air, which can be inhaled as well as float down to further contaminate the environment. In Paris, airborne microplastics have been found to fall to the ground at rates of up to 10 tons a year.14