Gene Editing Found To Cause Chaos in the Genome of Tomatoes

Recent scientific findings have revealed chromothripsis-like effects after the application of CRISPR/Cas gene editing in the genome of tomatoes, reports Testbiotech in an article commenting on a just-published preprint study by scientists based in Israel and the US.

June 23, 2023 | Source: Sustainable Pulse

As Testbiotech explains, it has been known for some time that “CRISPRthripsis” occurs in mammalian (and human) cells. But now this effect has also been demonstrated in plants after gene editing applications. The findings show that gene editing applications cause unintended genetic alterations much more frequently than previously thought, affecting large parts of the genome.

Testbiotech notes that when both strands of DNA are cut, as is typically the case with the CRISPR/Cas, the ends of the chromosomes can lose contact with each other. If the repair of the break in the chromosomes fails, the severed ends can be lost, restructured or incorporated elsewhere. Chromothripsis otherwise seems to be relatively rare in plants. CRISPR/Cas applications can frequently result also in changes at genomic sites that are particularly well-protected by natural repair mechanisms. The risks cannot generally be estimated, so they must be investigated thoroughly in each and every case.