Scientists Discover Hundreds of Methane Leaks Bubbling from the Floor of the Atlantic Ocean

In what could be a clue to the future effects of climate change, scientists have discovered a huge collection of methane leaks from the ocean floor off the United States' eastern seaboard.

August 26, 2014 | Source: Think Progress | by Jeff Spross

For related articles and information, please visit OCA’s Environment and Climate Resource Center page.



CREDIT: Shutterstock

In what could be a clue to the future effects of climate change, scientists have discovered a huge collection of methane leaks from the ocean floor off the United States’ eastern seaboard.

Their work, published Sunday in Nature Geoscience, used a research vessel equipped with sonar to map a 94,000-square-kilometer area that arcs from North Carolina up to Massachusetts. Within that expanse, according to Scientific American, they discovered around 570 separate plumes of bubbles rising from the floor of the Atlantic Ocean. And while the scientists haven’t yet collected samples, the bubbles’ sources suggest they contain methane.

The study is surprising, because such leaks are usually found atop known methane reservoirs – or above active tectonic regions – and scientists had previously thought very few such leaks were to be found in that area of the Atlantic shelf. “This is the first time anyone has systematically mapped an entire margin,” Christian Berndt, a marine geophysicist at GEOMAR in Kiel, Germany, who was not involved in the study, told Science Magazine. “They found that there was much more methane coming out than was suspected beforehand.”

Methane is a greenhouse gas, far more potent on a pound-for-pound basis than carbon dioxide. But at 90 metric tons per ear, the methane being released by the 570 leaks is dwarfed by the annual releases from human industrial and agricultural activity, as well as other natural sources. Still, the researchers estimate there could around 30,000 more of the leaks all over the world.

There’s also the possibility that climate change and alterations to ocean temperatures could lead to far bigger releases.

“These little bits of bubbling here or there will not make a memorable impact,” Jens Greinert, who heads the deep-sea monitoring unit at GEOMAR, told Science Magazine. “It becomes interesting only if you have a catastrophic release.”